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Abstraci. The thermodynamic limit for the square-triangle random-tiling model is considered. 
The analytic solution of the Bethe-ansau equations found recently by Widom is obtained. The 
onalytic expression for entropy density as a function of the fraction of the plane occupied by 
triangles rut is derived for the case at 2 $, i.e. for the phason gradients having 6-fold symmetry, 
including 12-fold symmetric phase as the limiting case. The aact values for phason elastic 
constants are also found. 

1. Introduction 

The square-triangle random-tiling model belongs to the class of two-dimensional statistical 
mechanics problems, which deals with the coverings of the plane by rigid tiles. This class 
of models comprises, in particular, the dimer model [I] on a lattice and the hard-hexagon 
model 121. The exact solution of them in the thermodynamic limit is usually taken to mean 
the analytic expression of the free energy as a function of a set of macroscopic parameters. 
Examples are the densities of the dimers of distinct orientations for the dimer model and the 
occupation factors of different sublattices for the hard-hexagon model. The correct choice 
of macroscopic parameters rests, however, as a matter of guesswork  as the square-triangle 
random tilimg is commonly regarded as a model of the structure of the 12-fold symmetric 
quasicrystal (QC), it is reasonable to describe it by the macroscopic parameters borrowed 
from the theory of QC. 

The model of the structure of quasicrystals based on the random tilings of the plane was 
originally suggested by Elser [3] as an alternative to the deterministic description of QC. The 
macroscopic parameter of order  in^ the random-tiling QC models is called the phason field 
(see, e.g., [4]). In random-tilings the phason field is a fluctuating quantity, in contrast to the 
deterministic Qc, where it is constant. By a widely believed hypothesis, these fluctuations on 
the large scale are described by the entropy-density quadratic in the phason gradient [S. 61. 
One of the consequences of this hypothesis is that the mean entropy density is quadratic in 
the mean phason gradient, which is also called the buckgroundphason strain [4]. The results 
obtained below show, in particular, the validity of this conjecture for the square-triangle 
random-tiling model. 

The space of background phason strains for the square-triangle tiling is three- 
dimensional, whereas the phason gradients of general tilings with 12-fold symmetry form a 
4D space [7]. This peculiarity of the square-hiangle tilings is due to a geometric constraint 
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Figure 1. The region in the 30 space of phason gradients accessible to the square-triangle 
ti l igs.  This region is bounded by curved surfaces; thin lines represent their edges. The vertices 
correspond to the ideal square and triangular lattices: the tiles constituent these lattices are shown 
nearby. Bold lines corremond to the Rhason mdients having 6-fold and 4-fold (with reflection) - - 
symmekies. 

remarked in 141. The phason strain of a tiling is bounded; roughly speaking it cannot exceed 
that of an individual tile. More precisely, phason gradients corresponding to tilings belong 
to the region of complex form shown on the figure 1. The 30 degree rotation in the plane 
of tiling acts on the space of phason strains by the rotation through 120 degrees and the 
reflection in the symmetry plane. Thus, this plane corresponds to the tilings with 4-fold 
symmetry. The additional requirement of the reflection symmetry is satisfied on three lines 
in this plane, whereas the 6-fold-symmetric tilings correspond to the line, perpendicular to 
it (see figure I). Finally, the 12-fold symmetry demands the strain being equal to zero. 

The thermodynamic parameters of random-tiling models of quasicrystals should not 
distinguish tiles of the same shape, but having different orientations. In the case of the 
square-triangle tiling the only independent parameter of this kind is the relative concentration 
of squares and i&wigles, or, say, the fraction of plane occupied by triangles ut (see [8]). 
The parameter ut depends on the phason strain. Zero gradient requires ut = 4, and the 
maximum-entropy condition for ut z 4 gives rise to tilings with 6-fold symmetry (at least 
for ut - 1 << 1, but the author supposes that this is hue for all < crt < 1). 

2. Bethe-ansatz equations 

As was shown in [4], the square-ttiangle random-tiling model allows the transfermatrix 
description. However, the way the transfer matrix is introduced in [4] has the inconvenience 
that the squares of different orientations are transformed into figures of different areas. Thus, 
the area scaling factor depends not only on cry. This means that the largest transfer-matrix 
eigenvalue does not correspond, in general, to the maximum of the entropy density for a 
given at. This difficulty can be eliminated by using another lattice representation of the 
model. The details of this representation are clear from an example of the transformed 
tiling shown in figure 2. The tiles are deformed in such a way that equilateral triangles 
are transformed into rectangular ones and &15" squares (see [8]) are transformed into 
paralle:ograms, while 45" squares rest unchanged. Because the vertices of the transformed 
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Figure 2. The lattice represes~tation of Ihe square- 
triangle tiling model. The world lines of right and 
left p d c l e s  are shown by bold lines. 

tiling form a square lattice rotated by 45", it is possible to introduce the transfer matrix 
between the states on the neighbouring rows. This transfer matrix can be conveniently 
expressed in terms of left-moving and right-moving (henceforth left and right) particles, the 
world lines of which are shown in figure 2. Choose the unit of length in the 'space' and the 
ufit of 'time' both equal to one-half diagonal of a square, the speed of free particles is thus 
equal to Al. All particles have at the same moment time coordinates of the same parity; 
the parity, however, changes from one row to another. The weights associated with freely 
moving particles are all equal to 1, but it is necessary to impose the weight factors equal 
to exp(.t@) for two distinct ways of intersection of the world lines [4,8]. This parameter 
is a thermodynamic conjugate to A, the average difference between the numbers of 'right' 
and 'left' intersections in a row [8]. 

It is worth mentioning here that we are dealing with the same particles as those 
introduced in 14,531 and only their coordinates are transformed; more specifically, the 
coordinate of a particle is increased by the number of particles to the left of it. This 
fact permits using the same form of Bethe ansatz as that found in [SI for the eigenstates of 
the transfer matrix. Following [8], denote the amplitudes of plane waves by A(&]) ,  where 
{ki}  stands for an ordered set of momenta of particles. These momenta are denoted by pi 
and qj for left and right paxticles, respectively. The sequence of p and q in {ki} matches 
rhe sequence of the particle species in the configurational space. From the preceding it may 
be seen that the eigenstates used here and those of [SI are described by the same set of 
momenta and differ only in the amplitudes A({k j ] ) .  The eigenvalues of the transfer matrix 
are thus the same: 

The equations for A({ki})  for the modified tiling follow from (3) and (4) of [8]: 

A ( .  . . , pj, pi,.  . .) = -A( .  . . pi, p j , .  . .) 
A ( .  . . ,Pi, qkq . . .) = (6'1 - ' b j )A( ; .  ., qi, Pip.. .) 

where 

ti = exp(2ipi + 4)  ej = - exp(-2iqj - 4 ) .  (3) 

The equations (2) on the amplitudes A({k i ] )  define the eigenstatcs of the transfer matrix. 
The complete proof of this fact is presented in appendix A. 



3602 P A Kalugin 

The periodic boundary conditions give rise to the following equations: 
e - W p  = (-1y+-l n~tt: - $1) e‘%y = (-I)~+”--’ ntsi - ej) (4) 

where 2M is the length of a row, and n- and n+ are the numbers of right and left particles, 
respectively. 

j 

3. Exact solution in the thermodynamic limit 

As the pari@ of M and n* is of no importance in the thermodynamic limit, one can drop 
the factors id in (4). If in the first of them @j axe considered as parameters, then {et] are 
roots of the following equation in z: 

(5) e-M+zM = n ( z  - @j). 

j 

It is convenient to take a logarithm of (5): 
M(+ + log(z)) - c l o g ( z  - @I) = 0 (mod 2xi). (6) 

The real part of (6) determines a smooth closed curve in the plain of the variable z, which 
can consist of one or several components. In fact, at least while n- /M is small enough, 
it consists of only one loop, and everywhere below only this case is considered. As an 
algebraic equation of the order M, equation (5) has M roots, hence the imaginary part of 
(6) gives M possible positions on this curve. Numerical calculations for small M show 
that A reaches its maximal value when 6; occupy n+ successive positions without omission 
(see figure 3). The author supposes that this is true also in the thermodynamic limit, 
M + 00, n*/M --t constant. It is convenient to introduce the functions, 

i 

Differentiating (6) and taking into account the arrangement of ti discussed above, we obtain 

Mf+(sir)(h+l- Fd = 27ri. (8 )  
M-bW 

This expression and its analogue for f - ( $ k )  allow transforming the sum in 0) into an 
integral, 

where b-, by, b+ and b; denote the thermodynamic limit for &+, el, @I and en- (the 
symmetry of {e;] and ( $ j }  with respect to complex conjugation is required by the ‘time’- 
reversal symmetry of the major eigenstate). 

In the thermodynamic limit the points ( e j )  and {e?) approach the smooth curves \U 
and E, which should be taken as the integration contours in (9). As the integration in 
(9) is analytic, the precise form of the contours is not important, while they get around 
the singularities of the integrands in the same way as ‘4 and S do. Generally, there are 
singularities at the points b+, b-, b;, bl and 0, but we should be careful, when rY and E 
intersect each other. In this case the point of intersection, being singular for f+ and f-, 
‘pins’ both contours. The numerical calculations, however, show no intersection of this sort 
for the case b+ = b-, which corresponds to the phases with ort z 4, as shown below. 
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0 

RefzJ 

Figure 4. The monodromy group generators 
for the function 4 f+(r) fa- f-(z). 

Consider now the analytical properties of an arbitrary linear combination u+f+(z) + 
a-f-(z). Suppose, that the curves 'lJ and E do not intersect, and arrange two cuts in the 
plain of the variable z, having the same topology (see figure 4). Equations (9) give the 
monodromy transformation of this function with respect to the contours r+ and F-: 

r + : ( a + ) + (  1 0  ) ( a + )  r - : ( a + ) + ( , ,  1 1  1 ) ( 4 ) .  (io) a- -1 1 a- a- a- 

These two matrices generate the whole group SL(2, Z), which is thus the monodromy 
group of f+ and f-. The situation is significantly simplified if b+ = b- = b, when we 
deal with only one monodromy generator r+r-. Fortunately, as shown below, this case 
corresponds to tilings having 6-fold symmetry, and, particularly, to the 12-fold-symmetric 
tiling. Everywhere below we consider only this case. Because (I'+rJ6 = 1 the monodromy 
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group is isomorphic to Z,. This means, that f+(z) and f-(z) are singlevalued functions 
of the variable 

These functions may have singularities at the points, corresponding to z = 0, CO and at 
t = 0, CO. This information, together with the monodromy transformation rules (10) is 
sufficient to solve the (9) (see appendix C). The functions f+(z) and f-(z) correspond to 
different sheets of the Riemann surface of the same function fk: 

where C is an unknown complex constant, and the phase of the variable t is chosen at 
z = 0 equal to +a/6 for f+ and -a16 for f-. Recall now that the monodromy properties 
(10) hold only when the curves Y and E do not intersect. These curves are defined by 
the condition that the forms f-dz and f+dz have purely imaginary values on the vectors, 
tangent to Y and E, respectively (see equation (6)). The simple analysis shows, that the 
non-intersection condition is satisfied only at C = 0. Thus, for b+ = b- we have 

f d z )  = (-) t + t-1 z-1. 

& 
Although the parameter C is redundant in the case b+ = b-, it describes, as shown below, 
the perturbations of f+  under small changes of n+, n- and A. 

Consider first the case of symmetry between left and right particles. This symmetry 
imposes the conditions n- = n+, b = ilbl and 4, A = 0. Denote the densities of left and 
right particles n+/M and n - / M  in the thermodynamic limit by Q- and Q+: 

nT Q+= lim -. 
M-too M 

These densities are defined by the residues of f+(z)dz and f - ( z )  dz at z = CO: 

(15) 
and are both equal in this case to 1 - l/d. These densities, together with the condition 
A = 0 correspond to zero phason gradient (see appendix B). A simple algebra then gives 
entropy per one vertex for this case (see appendix C): 

(16) 
which is close to the value O.I20055249315(6) found numericalIy by Widom [8J. 
However, the assertion [8] that in the thermodynamic limit of the 12-fold-symmetric phase 
P I ,  pn+, ql, qn- + i n / 4  is erroneous. Indeed, this should mean that b = i, but this is not 
the case: b = i6&(2 - d)& = 1.060, . . i. 

Apply now a small phason gradient having 4-fold symmetry, imposing Q+ = Q -  = 
1 - l/& - E ,  A = 0. Then a gap appears between b+ and b-. Nevertheless, we can 
still use the variable I, defined in ( l l ) ,  where now b = (b+ + b-)/2. In this case f- 
and f+ are single-valued functions of f except two small regions It1 - Ib+ - b-1'/6 and 
It]-' - 1b+ - b-l'l' around the points t = 0 and t = CO. This gives rise to the singularities 
in the fist-order correction to f+ in E at the points t = 0, CO. As t approaches 'bad' 
regions around 0 and CO, this correction turns comparable with f*. The maximum entropy 
condition means, as can easily be shown, that we have to maximize E for a given Ib+ - b-1, 
or, reciprocally, to minimize Ib+ - b-1 keeping E constant. Thus, among all corrections 

res (f*dz)l,, = Qi - 1 

u,,~ = log(108) - 2& log(2+ &) = 0.120055 249318541 . . . 
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to f* satisfying the condition Q+ = Q- = 1 - I/& - E we should select that having 
the weakest singularities at t = 0, 00. On the other hand, we have seen, that the condition 
of slow growth of fe at t = 0.00 leaves the complex parameter C in (12) indeterminate. 
Evidently, the terms in (12) proportional to C and C* give the least singular correction to 
f+. The condition Q+ = Q- = 1 - l/& - d is satisfied when C = ~ / 2 ,  which gives (see 
appendix C) 

(17) 
One can remark that the terms of the first order in E do not appear in (17) and that the 
coefficient at E* is negative, conforming to the assumption that the entropy reaches its 
maximum on tilings with 12-fold symmetry. Taking into account that the entropy per unit 
area U, is expressed in terms of 0; as 

U,, = u,,~ - 3&log(2 + &)E' + O(E').  

U, = (1 + (2/& - l)i,)o; (18) 

we obtain one of the phason-elasticity constants Kt (see [8, 91): 

Kt  = (2-&)((log(108)/&+21og(2+&)) = 1.43008383175 ... 
which is close to the estimation Ke = 1.430083 83079(3) found in [8]. 

It is worth mentioning here that this result cannot be obtained by the formal 
decomposition of the correction to f+ in powers of b+ - b-. Indeed, the fact that the 
correction tums comparable with f+ when It1 - lb+ - b-1'/6 or It-'[ - Ib+ - b-1'I6 
corresponds to the scaling 

(19) 

161 - lb+ -b-l'I3 (20) 
i.e. the correction to f* is singular with respect to b+ - 6-.  

(12) at z = 03 give 
Consider now the case b+ = b- = ilble-'Y. Calculations of the residues of f* from 

which is consistent with the 6-fold symmetry of the phason gradient (see appendi B). It 
remains to calculate As which must be equal to 0 for the case of the 6-fold symmetry. As 
a thermodynamic conjugate to the variable 4, A is equal to the first derivative of the free 
energy per row with respect to 4. The calculation of this derivative can be performed in 
the same way as the calculation of the first-order correction in E in (17) and gives 0 (see 
appendix C). Thus, one obtains the expression for uv for all phason gradients having &fold 
symmetry: 

) 2cos(y/3) - J5 
cos y 2cos(y/3) + J5 0" = log (*) + &cos (5) log ( 

2 - cos(2y/3) + 3sin(y/3) 
2 - cos(2y/3) - 3sin(y/3) 

-sin (:) log ( 
where y is related with n- and n+ by (21). It is convenient to express y in terms of the 
area fraction cut: 

J 2 q  - 1 . .  . Y  
5 = 43 t (2 - 4)s 
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Rgure 5. The enuopy per one vertex 
as a fundion of at. The left part of the 

+d the right p a t  is analytic (see (U) and ’ (23)). 

Decomposing (22) and (23) at y = 0 one can obtain the second phason elasticity constant 
[S, 91 (see appendix B): 

(W 
This value differs by 1% from that found in [SI. The author supposes that this difference 
stems from the fact that in [SI maximization of the entropy per unit area is erroneously 
identified with the maximization of the largest eigenvalue of the transfer matrix. As 
discussed above, this is true only when the area scaling factor in the lattice representation 
of the model depends only on cut, and this is not the case for the representation, used in [SI. 

Recalling that at at > $ the entropy reaches its maximum on the tilings with &fold 
symmetry, we conclude that (22) and (23) give the function uv(cut) for cut z 4. This function 
is plotted in figure 5 together with the results of numerical calculations for the case of 4-fold 
symmetry (cut 4 4). 

K p  = 2& - 3 = 0.464Il01615.. . ~ 

4. Discussion 

The square-triangle random-tiling model appears to be solvable analytically in the 
thermodynamic limit for the phason strains having 6-fold symmetry. In what follows, 
the results of this solution and the open questions are discussed. 

One can remark that the curve uv(ffl) (see figure 5) is concave on the segments 
0 c cut c and 4, c cut < 1. Moreover, the curve U&), which is not shown here, 
possesses the same property. This should mean that all phases of the square-frianglerandom- 
tiling model except the perfect triangular and square lattices and the phase having 12-fold 
symmetry are absolutely unstable! This seems to be doubtful, because the Monte Carlo 
simulations show the stability of the phases with any value of at [4]. In fact this apparent 
contradiction is due to an unphysical feature of the model, forbidding the system from 
phase separation. Indeed, the phases having different values of phason gradient are always 
separated by an ‘intermediate phase’, which is present in amounts, comparable to the amount 
of those firsts. In any real system these constraints are cancelled by the presence of defects, 
no matter how high the energy cost of the defects is. 

The solutions of the Bethe-ansatz equations (4) differ qualitatively in the case of &fold- 
symmetric background phason strain and in other cases. In the 6-fold symmetric case the 
distribution of the momenta pi and qj is singular near their limiting values: as follows from 
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(13), the density of states diverges as (see figure 3). Thus, the question arises 
as to whether the 6-fold-symmetric tilings are really set off all others, or is this singularity 
just an artefact due to improper choice of the coordinate system. Because the dependence 
of the entropy density on the phason strain is regular in the vicinity of the line of &fold 
symmetry at least up to the terms of second order, one could suppose the latter. The 
author, however, interprets this phenomenon as an indication of the presence of Ihidden’ 
macroscopic parameters (or slow variables), in addition to the phason field. Although the 
very notion of the slow variable is not rigorously defined, it is generally supposed that a 
complete set of these variables fixes the microscopic state of a system up to purely local 
degrees of freedom. The phason field for the square-triangle tiling, however, does not 
satisfy this condition. Indeed, switching of a ‘zipper’ (see the definition of this object in 
[4]) cannot be decomposed into a sequence of local rearrangement of tiles, without creation 
of defects. On the other hand, two tilings, differentiated by the state of a ‘zipper’, are 
macroscopically identical. To illustrate the aforementioned, one can compare the square- 
triangle t i h g  and the dimer model on the honeycomb lattice. The latter has much in 
common with the random-tiling QC models; in particular, it allows the description by an 
analogue of the phason field [lo]. This field satisfies the condition on the complete set of 
slow variables, formulated above. The analogy with the square-triangle tiling model can 
be pursued because the dimer model on the honeycomb lattice, mapped by Wu [ l l ]  onto 
the 6-vertex model, can be solved by the Betheansatz technique, too [12]. This solution, 
however, reveals no singularity in the distribution of the momenta of particles for any value 
of the background ‘phason’ strain. 
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Appendix A 

Equation (2) for the amplitudes of the partial waves A&)) defines unambiguously the 
ratio A((P(k;)})/A((!q}) for an arbihary permutation P. These equations are suited to the 
requirements of one- and two-particle processes, and their compatibility with multi-particle 
scattering is a non-trivial issue. The proof of the validity of (2) for multi-particle processes 
is given in what follows. 

The equation on the eigenstate of &transfer matrix is 

A441 = c T l z j i l z i l ~ l t i l  (A.1) 
I s 1  

where A is given by (1) and the amplitudes in the coordinate space are 

Consider first the special case of the configuration [zi], in which all particles are separated 
by distances over 2. As there is no interaction between particles, the sum in the RHS of 
(A.l) comprises only one non-zero term. Because A in (1) is a product of single-particle 
contributions, (A.l) holds for {z;] of the sort. 
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For an arbitrary configuration {z;] the number of non-zero terms in the RHS of (A.l) is 
equal to 2L, where L is the number of elementary dusters, like that shown in figure Al(u). 
Any of these clusters can originate from two configurations, as shown in figures Al(b) and 
(c). Because the contributions of elementary clusters in (AA) are multiplicative, it will 
suffice to consider only one of them. Let it comprise kt left and k- right particles having 
coordinates {-2k++l, .... -11 and 11, ... ,2k--1], respectively. Equation (A.l) becomes 

where 

4 k+(k+ - 1) - k-(k- - 1) 
X eXP ( 2 

............ " ...... " ....... 

a .fi -3 -I ~1 -. 3 J 

4 4 4  
Figure Al.  (a) The elementary cluster 

c) x ........ 2 ........ \- ...... 5 1 "L 1 ...... (k+ = 4 and k.. = 3), and two configurations 
.6 4 3 0 2 4 6 ofpanicles, whichcanprecedeit(b)and(c). 

W(x1, .... x,) =det 
i j "" 
. . . .  
. . .  x."-' 



Square-triangle random tiling 3609 

and the hat over a symbol denotes its omission. As (A.4) is nothing but a Laplace expansion 
of W(@,, . . .,eb) in the minors of the first order, the identity (A.l) is obeyed for any 
configuration ( z j } .  Thus, the Bethe ansatz (A.2) with amplitudes A([kj ) )  satisfying (2) 
gives the exact eigenstates of the transfer matrix. 

Appendix B 

This appendix is concerned with purely geometrical relations between different parameters, 
describing the background phason strain. The consideration is restricted to the special cases 
of the 6-fold and 4-fold symmetries. 

As the background phason strain parameters and the area fraction at are insensitive 
to local rearrangements of tiles, it will suffice to consider only one representative for any 
phason strain. It is convenient to choose the periodic tilings, shown in figure B1. Although 
these tilings exist only while x and y are integers, one can formally continue the results to 
arbitmy real values of x and y. 

Consider first the case of the 6-fold symmetry (figure Bl(a)). The densities of right and 
left particles are equal to 

3x2 + x Q2-= x f l  
'+=3x2+3x+1  3 X 2 + 3 X +  1 

The area fraction at is given by 
3x2 + 1 

at = 
( f ix  + 1)* ' 

Because the substitution 
sin y/3 + (COS y / 3 ) / A  

1 - 2sin y/3 
X =  

transforms (B.l) into (21), the densities of particles, given by (21), are compatible with the 
6-fold symmetry of the phason strain. The relation (23) between the parameters at and y 
follows from (B.2) and (B.3). 

Figure B1. Periodic tilings, having 
(a) 6-faid and (b) &fold symmetries 
(x = 3 and y = 4).  Both tilings are 
shown in the Wce reoresentation 

( b )  (see figuR 2). 

The 4-fold symmetry requires n+ = n-, while the reflection symmetry gives also A = 0. 
An exampIe of periodic filing, having this symmetry is shown in figure Bl(b). The densities 
of right and left particles are given by 

I Q+ = Q- = - 
y C 2  

while the area fraction equals 
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Zero background phason strain corresponds to x = 3 1 3  and y = (45 - 1)/2, Thus, 
the densities of particles in this case are 

.Js Q+ = Q- = 1 -- 
3 

I and the area fraction at equals 3 .  
Consider now the quadratic invariants in phason strain [4 ,8] .  The action of the 12- 

fold-symmetry group on the space of the phason gradients (see figure 1) leaves invariant 
two subspaces. One of them, two-dimensional, corresponds to 4-fold-symmetric phason 
strains, the other, onedimensional, to 6-fold-symmetric strains. Hence, there are two 
independent quadratic invariants in phason gradients. It would be reasonable to choose 
as these invariants the squares of the 4-fold and the 6-fold-symmetric components of the 
phason strain. Unfortunately, of the invariants 1, and Z& already introduced in [4,8,9] 
only I,, meets this condition. In fact, as follows from formula (9) of [SI. I,, vanishes on 
4-fold-symmetric phason strains. The second 'natural' invariant should vanish on the &fold- 
symmetric subspace. As is clear from equations (9) and (IO) of 181, the linear combination: 

i, = z, +$I,, (B.6) 

and 7, in terms of other parameters, 

(B.7) 
which is valid at least up to the second order in phason strain (Henley [I31 argues that the 
definition off ,  given in [4] makes (B.7) exact). 

Consider fust 6-fold-symmetric phason strains, which are described by the parameter y .  
As follows from (23) and (B.7), 

possesses the desired property. Express the invariants 
describing the phason strain. In doing so, one can use the relation 

at = f -'I 2 F  

On the other hand, as the 'natural' parameter it equals 0 in the case being considered, 
is given by 

The invariant ic characterizes the 4-fold-symmetric component in phason strain. It is 
convenient to express it in terms of E ,  the deviation of the density of the right and left 
particles from 1 - &/3: 

(B.9) 

The formulae (BA), (B.5) and (B.9) allow one to express at in terms of E .  Decomposing 
of at up to the second order in E yields 

45 
E = 1 - - - Q*. 

3 

Taking into account (B.6) and (B.7), one obtains 

(B.lO) 

(recall, that I,, = 0 for 4-fold-symmetric phason strains). 
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Figure C1. The poles of the form f+dr 
and the secmrs, corresponding to f+ and 
f- in the plane of the variable I. 

Appendix C 

This appendix describes, in brief, how the use of the monodromy properties of f+ and f- 
can help one to solve (9). In what follows it is also shown how the entropy density (22) 
and the phason elastic constants (19) and (24) were calculated. 

The functions f+ and f- can be continued analytically beyond their cuts by the 
monodromy transformations (10). Because the monodromy element r+r- transforms f- 
into f+. they correspond to different branches of the same analytic function, denoted by,&. 
As discussed above, when b+ = b- = ilble-'Y, the Riemann surface of f+  consists of six 
sheets, which can be mapped into a plane by the substitution (1 1). Consider the analytical 
properties of f+dz as a I-form in the plane of the variable 1. The finiteness of the number 
of particles implies the absence of the siugularities in f+dz at f = 0, M. Hence, there are 
no singularities other than the simple poles at the points, corresponding to z = 0, CO, i.e. 
the form f& is rational in the variable t .  These points are listed in table 1, along with the 
residues of f*dz at these points. The poles tl and 12 belong to the sheet of the Riemann 
surface of f+, corresponding to f+, while tlo and t l l  belong to the sheet, corresponding 
to f- (see. figure Cl). As z(t1) = z(t11) = 0 (see equation (11)). the residues at them are 
both equal to 1. The res:dues r2 and r10 are given by (15). All other residues in table 1 
are calculated from these four by application of the monodromy transformation rules (10). 
These numbers define f& unambiguously: 

df 
fidz = r,, - 

*=I t - t" 

This expression is equivalent to (12) if 

3 
2 n i y  Q* = 1 - -cos - - 2ReC J3 3 

3 
Consider now the calculation of the entropy density (22) (formula (16) is the special 

case of (22) when y equals 0). The entropy per one vertex uv and the maximal eigenvalue 
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A of the transfer matrix are related by 

uv = lim M-' (log A - @A) (C.2) 
M+CC 

where A, the average difference between the numbers of 'right' and 'left' intersections of 
the world lines of the particles in a row, is given by 

A can be expressed in terms of (ci} and [@j ]  in the following way: 

@ 
S + + L  Q+-Q- 

+ 2  
lim M-' log A = - 

M+CC 2 
where 

s+ = M+CC lim M-' C l o g  i~@ji s- = M+CW rim M - 1  C l o g  . (C.4) 
j i 

For brevity, it is convenient to introdwe the following forms: 

g+&= ( L + L ) d t  t - t z  t-f* g-dz= 

h+dz = (2' - +')dt t - t 7  

Equation (6) and its analogue for [@I] allow one to write 

h-dz= (- E - &  rs + L ) d r .  t - t , ,  

6 
(f+ - g+)dz = (Q+ - 1) log - - 4 

'6"l (C.3 
J-.m = R e L  (f- - g-)dz = (Q- - 1) log - +4 . 

Ibl 
On the other hand, equations (C.4) give 

J+,o = R e I ( f +  - h+)dz = log6lbl- s+ 

(f- - h-) dz = log6lbl- s- . 
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The integrals in (C.5) and (C.6) can easily be taken in the plane of the variable t: 

J + , ~  = rn log IC“ - ~ Z I  J - , ~  = C r, log IC, - rlol 
n#2.8 n#4,10 

(recall that all r, are real numbers). Equations (C.3). (C.5) and (C.6) give 

J+.o + J-,o lim M-’ log A = log36 - ~ 

M+W 2 - 
J+.m f J-,w 

Q + + Q - - 2  
J+,,(Q+ - 1 )  + Lm(Q- - 1) 

2 + - 

The densities of the particles Q+ and Q- are given by (C.1). The differentiation of (C.7) 
with respect to C at C = 0 gives 0. As noted above, this corresponds to 

a 
-lOgA[c,o E O .  (‘3) 

Finally, equations (C.2), (C.7) and (C.8) give the formula for the entropy per one vertex 
(22). 

Consider now the calculation of the phason elasticity constants K1 and K,. In [8] it is 
claimed that they both are the two principal curvatures of the entropy density with respect 
to characteristic symmetry-breaking phason strains, but this is the case only for the constant 
Kt. In fact, the decomposition of the entropy per unit area near its maximum, given by the 
formula (6) of [8] can be rewritten in terms of the ‘natural‘ invariants as 

(C.9) 
where the ellipsis denotes terms of third and higher orders in phason strain. 

As is clear from (C.9), the constant Kt specifies the phason elasticity with respect 
to 4-fold-symmetric phason strains. These strains are in the first order described by the 
parameter E in (B.9). Thus, the arithmetics of the constant Kt requires a consideration of 
the first- and second-order corrections to f* in E .  The first-order terms are given by (12). 
where C = €12. As for the terms of the second order in E, there is good reason to believe 
that they are equal to 0. This point, being a vital issue in the calculations, merits detailed 
consideration. 

The calculation of Kt would present no problems if the equations (9) were solved exactly 
in the general case, when b+ # b-. Although they were not, the monodromy transformations 
(IO) may tell the following about the structure of the solution: (i) the Riemann surface of 
the function f+ consists of infinite number of sheets, which can be labelled by the elements 
of SL(2 .Z) ;  (ii) the form f+dz has two poles on each sheet at the points z = 0 and z = 03, 
whose residues can be calculated exactly; (iii) while b+ = b- the Riemann surface o f f +  
is degenerate, namely it is decomposed into disconnected parts, comprising six sheets each. 
Small 4-fold-symmetric phason strain, specified by the parameter E (B.9) affects both the 
values of the residues of f+dz and the topology of the Riemann surface o f f * .  Because the 
moncdromy elements r+ and r- can act separately when b+ # 6-, the parts of Riemann 
surface, so far disconnected, become joined by narrow necks of width lb+ -6-1 - c3P (20). 
As for the residues, the corrections to all them are linear in E. The formula (12) ignores the 
modification to the topology, but it should bc taken into account in the calculations in the 
next order in E .  Since it is the entropy density which is of most interest, one should consider 
the corrections to the integrals (C.5) and (C.6) caused by the changes in the topology of the 
Riemann surface of f*. These corrections arise from the contribution of the poles, lying 

a4 

0, = 0;o - 2 LK 1 1  i - f (K, - 4 LK P ) I P ” ’  
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on other parts of the Riemann surface. Because the net residue of f*dz on each part of the 
surface equals zero, this contibution away from the points z = b-, bt is proportional to 
Ib+ - b-1' - 6'. In other words, there is no correction of second order in E to the integrals 
(C.5) and (C.6). 

All the above implies that the decomposition of the expression (C.7) up to the terms of 
the second order in ReC at C = 0 

lim M-' log A =log 108 - 2 a I o g  (2 + A) - lZZ/slog (2 + -6)(Re C)* + o(Re C)I 
M-tm 

(C.10) 

suffice to calculate the elastic constant Ke. The formula (17) follows from (C.2), (C.10) 
and from the fact that the 4-fold symmeny with reflection requires @ = 0. Because 4 is 
related to E by (8.10). the correction to the entropy per one vertex is 

0; = ov0 - &if (("5 - 96) iog(2 + 4) . 
As the factor between the entropy per unit area and uv depends on cr, (see the formula (18)), 
it's derivative with respect to at also contributes to K f :  

(C. 11) 

The expression (19) follows from (C.11) and (B.7). 

between 
Decomposing (22) up to the second order in y and taking into account the relation 

and y (8.8) we obtain the second 'natural' phason elasticity coefficient: 

K -1K 6 - - A) (12 - log(lO8) - 2Z/sIOg(2 + &)) (C.12) 

(as in the case of K E ,  the terms coming from the scaling factor (18) should be taken into 
account). The result (C.12) combined with the expression for Ke (19) gives (24). 
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